Radioactive Materials Incidents (ERG Emergency Response Guidebook) 1996 DOT [720p]

in 1996 •  7 years ago 


DEPARTMENT OF TRANSPORTATION "Using the ERG: A First Response to Incidents Involving Radioactive Materials". Explains how to utilize the "North American Emergency Response Guidebook" (1996) when responding to radioactive materials transportation accidents. Originally a public domain film from the US National Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied. The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original). https://en.wikipedia.org/wiki/Radionu... Wikipedia license: http://creativecommons.org/licenses/b... A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is an atom that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are powerful enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single element the decay rate, and thus the half-life (t1/2) for that collection can be calculated from their measured decay constants. The range of the half-lives of radioactive atoms have no known limits and span a time range of over 55 orders of magnitude. Radionuclides occur naturally or are artificially produced in nuclear reactors, cyclotrons, particle accelerators or radionuclide generators. There are about 730 radionuclides with half-lives longer than 60 minutes (see list of nuclides). Thirty-two of those are primordial radionuclides that were created before the earth was formed. At least another 60 radionuclides are detectable in nature, either as daughters of primordial radionuclides or as radionuclides produced through natural production on Earth by cosmic radiation. More than 2400 radionuclides have half-lives less than 60 minutes. Most of those are only produced artificially, and have very short half-lives. For comparison, there are about 254 stable nuclides. All chemical elements can exist as radionuclides. Even the lightest element, hydrogen, has a well-known radionuclide, tritium. Elements heavier than lead, and the elements technetium and promethium, exist only as radionuclides. Unplanned exposure to radionuclides generally has a harmful effect on living organisms including humans, although low levels of exposure occur naturally without harm. The degree of harm will depend on the nature and extent of the radiation produced, the amount and nature of exposure (close contact, inhalation or ingestion), and the biochemical properties of the element; with increased risk of cancer the most usual consequence. However, radionuclides with suitable properties are used in nuclear medicine for both diagnosis and treatment. An imaging tracer made with radionuclides is called a radioactive tracer. A pharmaceutical drug made with radionuclides is called a radiopharmaceutical...


▶️ DTube
▶️ IPFS
Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
Sort Order:  

Hi! I am a robot. I just upvoted you! I found similar content that readers might be interested in:
https://www.youtube.com/watch?v=45ojk15P4yw