kin geo8

in msp •  6 years ago 

Chapter 1
Sets and Functions
Exercise 1.1

  1. Write each of the following sets (i) in set builder form (ii) in listing its elements.
    (1) The set N of natural numbers.
    (2) The set J of all positive integers.
    (3) The set P of all prime numbers.
    (4) The set A of all positive integers that lie between 1 and 13.
    (5) The set B of real numbers which satisfy the equation 3x2 + 5x – 2 = 0.
  2. Choose a suitable description (a) of (b) or (c) in set builder form for the following sets.
    (1) E ={ 2, 4, 6, 8}
    (a) E = { x/ x is an even integer less than 10 }
    (b) E = { x/ x is an even positive integer less than 10 }
    (c) E = { x / x is positive integer, x< 10 and x is a multiple of 2}
    (2) F = { 3, 6,9, 12, 15 , …}
    (a) F = {x/ x is appositive integer that is divisible by 3}
    (b) F = {x/x is a multiple of 3}
    (c) F = {x/x is a natural number that is divisible by 3}
  3. A = {x/x2 + x – 6 } and B = { -3,2}. Is A = B?
  4. A = {x/x is prime number which is less than 10} and B = {x/x2 – 8x + 15 = 0}
    (a) Is A = B (b) Is B⊂ A?
    (a) {x/x > 2} (b) {x/x ≥ 3} (c) {x/x x ≤ -1} (d) {x/x>-1}
    (e){x/-2≤ x≤ 2} (f) {x/0≤x≤ 5} (g) {x/x≤0 or x.2}
  5. Draw a graph to show the solution set of each of the following.
    (a) x-1<4 (b) x-1≤ 0 (c) 2x≤5 (d) 2x-1>7
    (e) 5-x≥1 (f) 1/3(x-1)<1
    3.Draw the graph of the following number lines below one another.
    (a) P = {x/x≥3, x∈R} (b) Q = {x/x≤-2, x∈R}
    (c) P∩Q (d) P∪Q
  6. On separate number lines draw the graph.
    S = {x/x>-4} , T = {x/x<3}.Give a set –builder description of S∩T.

Exercise 1.3

  1. M = {x/x is an integer , and -3<x<6} , N = the set of positive integers that are less than 8.
    Find M∩N. (3 marks)
  2. A = {x/x is a positive integer that is divisible by 3}, B = {x/x is a positive integer that is
    divisible by 5. Find (a) A∩B (b) L.C.M of 3 and 5
  3. J = {1,2,3,4,……} the set of positive integers and P = {x/x is a prime number} ,find J∩P.
    4.A = {x/x is a positive even integer }. B = { x/x is a prime number}. C = { x/x is a positive
    integer that is divisible by 3}. Find (a) A∩ (B∩C) and (A∩B) ∩C.
    Show that A∩ (B∩C)= (A ∩ B) ∩ C
  1. Let A = {x/x is positive integer that is divisible by 2}. B = { x/x is a positive integer that is
    divisible by 3}. C = {x/x is appositive integer that is divisible by 5}. List the elements of the
    sets A, B, C. Find (a) A∩ (B∩C) and (b) (A∩B) ∩C. Show that A∩ (B∩C)= (A ∩ B) ∩ C
    6.Let A = {x/x is a positive integer less than 7} and B = {x/x is an integer land -3 ≤ x ≤4}.
    List the number of A and B, and then write down A ∪ B.
  2. Let A = {x/x is an integer, 0<x<6} and B = {x/x is a positive integer less than 13 and x is
    a multiple of 3}. List the number of A and B, and find A ∪ B.
  3. If P = {x/x2 + 2x -3} and Q = {x/x is an integer, -1 ≤ x ≤ 4}, find P ∩ Q and P ∪ Q.

Exercise 1.4

  1. Find the set B\A and A\B in the following.
    (a) A = { 1,2,3,4,5,6} , B = { 3,5} (b) A = { p,q,r,s} , B = { x,y,z}
    (c) A = { 1,2,3} , B = { 1,2,3,4}
Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
Sort Order:  

Congratulations @thuya!
Your post was mentioned in the Steemit Hit Parade for newcomers in the following category:

  • Upvotes - Ranked 10 with 372 upvotes

I also upvoted your post to increase its reward
If you like my work to promote newcomers and give them more visibility on Steemit, consider to vote for my witness!

Congratulations @thuya! You received a personal award!

Happy Birthday! - You are on the Steem blockchain for 1 year!

You can view your badges on your Steem Board and compare to others on the Steem Ranking

Do not miss the last post from @steemitboard:

SteemitBoard - Witness Update
Vote for @Steemitboard as a witness to get one more award and increased upvotes!