logp-logq , then p=……….
A. p=q=1 B. p=q1-q C. p=q21-q D. p= q1+q E. p=q21+q
25.If loga=5, logb =3, then the value of ab is
A. 53 B. 2 C. 8 D. log53 E.100
- Given that loga2 =0.301 and loga3 =0.477, then =……..
A. 0.125 B. -0.125 C. 0.301 D. -1.125 E. 1.125 - If 2logp8-logp4=2, then p=……….
A. 4 B. -4 C. 4 (or) 2 D. 4 (or) -4 E. 2 - log19x-1x+2 = 12; x=………
A. 12 B. 32 C. 52 D. 72 E. 92 - log39x-22= x+2 ; x=…………
A. log113 B. log311 C.log3 D.log11 E. 0
30.If log2=m, log3=n, then log720 =……….
A. m+n+1 B. 3m+n+1 C. 2m+3n+1 D. 3m+2n+1 E. 3m+2n-1 - log29 =a , log26=………..
A. 1a+2 B.a+22 C. -a D. a+12 E. 2a - log0.040.4=…….
A. -3 B. -2 C. -1 D. 1 E.4 - log55+log31+log416=…….
A. 0 B. 1 C. 2 D. 3 E.4 - If log2.7 =0.431 , then log2.7 =………
A.1 .431 B.-0.215 C.0.2155 D. 0.862 E.-0.862
35.If log0.80 = 1.903 , then log0.802=…….
A. 2.806 B. 3.806 C. 2.903 D. 1.806 E. 3.903 - If log9=0.954 and log2 =0.310, then log1.8=…….
A. 0.644 B. 1.264 C. 0.264 D. 2.264 E. -0.264
37.Given log40=1.602 and log30=1.477, then log403=……..
A. 0.125 B. 1.125 C. 2.215 D. 1.125 E. None of these
38.Given that log8=0.908 , then log0.0812=………
A. 3.454 B. 2.454 C. 0.454 D. 1.454 E.