机器学习:数据预处理之归一化

in cn •  7 years ago 

归一化的目的:
1、归一化后加快了梯度下降求最优解的速度
2、归一化有可能提高精度

如下图所示,蓝色的圈圈图代表的是两个特征的等高线。其中左图两个特征X1和X2的区间相差非常大,X1区间是[0,2000],X2区间是[1,5],其所形成的等高线非常尖。当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;

而右图对两个原始特征进行了归一化,其对应的等高线显得很圆,在梯度下降进行求解时能较快的收敛。

因此如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。

计算样本距离时,如果特征向量取值范围相差很大,如果不进行归一化处理,则值范围更大的特征向量对距离的影响更大,实际情况是,取值范围更小的特征向量对距离影响更大,这样的话,精度就会收到影响

方法:
1、线性函数归一化(Min-Max scaling)

线性函数将原始数据线性化的方法转换到[0 1]的范围,归一化公式如下:

该方法实现对原始数据的等比例缩放,其中Xnorm为归一化后的数据,X为原始数据,Xmax、Xmin分别为原始数据集的最大值和最小值。

这种归一化方法比较适用在数值比较集中的情况。这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。实际使用中可以用经验常量值来替代max和min。

2、0均值标准化(Z-score standardization)

0均值归一化方法将原始数据集归一化为均值为0、方差1的数据集,归一化公式如下:

其中,μ、σ分别为原始数据集的均值和标准差。
标准差公式为:

该种归一化方式要求原始数据的分布可以近似为正态分布,否则归一化的效果会变得很糟糕。

以上为两种比较普通但是常用的归一化技术,那这两种归一化的应用场景是怎么样的呢?什么时候第一种方法比较好、什么时候第二种方法比较好呢?下面做一个简要的分析概括:
1、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,第二种方法(Z-score standardization)表现更好。
2、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用第一种方法或其他归一化方法。比如图像处理中,将RGB图像转换为灰度图像后将其值限定在[0 255]的范围。

3)非线性归一化

经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括 log、指数,正切等。需要根据数据分布的情况,决定非线性函数的曲线,比如log(V, 2)还是log(V, 10)等。(未学习)

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
Sort Order:  
  ·  7 years ago (edited)

这个太复杂,真心看不懂!IMG_20180307_102659.jpg
…………………………………………………………………
烦请继续为我点赞,我会回赞的(✪▽✪)