A Walk Through Ethereum Classic Digital Signature Code

in ethereumclassic •  7 years ago  (edited)

A Walk Through Ethereum Classic Digital Signature Code

Ethereum Classic (ETC) digital signatures secure transactions. These involve elliptic curve cryptography and the Elliptic Curve Digital Signature Algorithm (ECDSA). I will describe ETC digital signatures without these topics using only small Python functions.

Basics


Signing and verifying will be implemented using the following four constants and three functions:

N  = 115792089237316195423570985008687907852837564279074904382605163141518161494337
P  = 115792089237316195423570985008687907853269984665640564039457584007908834671663
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424

def invert(number, modulus):
        """
        Finds the inverses of natural numbers.
        """

        result = 1
        power  = number
        for e in bin(modulus - 2)[2:][::-1]:
                if int(e):
                        result = (result * power) % modulus
                power = (power ** 2) % modulus

        return result

def add(pair_1, pair_2):
        """
        Finds the sums of two pairs of natural numbers.
        """

        if   pair_1 == [0, 0]:
                result = pair_2
        elif pair_2 == [0, 0]:
                result = pair_1
        else:
                if pair_1 == pair_2:
                        temp = 3 * pair_1[0] ** 2
                        temp = (temp * invert(2 * pair_1[1], P)) % P
                else:
                        temp = pair_2[1] - pair_1[1]
                        temp = (temp * invert(pair_2[0] - pair_1[0], P)) % P
                result = (temp ** 2 - pair_1[0]  - pair_2[0]) % P
                result = [result, (temp * (pair_1[0] - result) - pair_1[1]) % P]

        return result

def multiply(number, pair):
        """
        Finds the products of natural numbers and pairs of natural numbers.
        """

        result = [0, 0]
        power  = pair[:]
        for e in bin(number)[2:][::-1]:
                if int(e):
                        result = add(result, power)
                power = add(power, power)

        return result


The invert function defines an operation on numbers in terms of other numbers referred to as moduli. The add function defines an operation on pairs of numbers. The multiply function defines an operation on a number and a pair of numbers. Here are examples of their usage:

>>> invert(82856, 7164661)
3032150

>>> add([84672, 5768], [15684, 471346])
[98868508778765247164450388534339365517943901419260061027507991295919394382071, 110531019976596004792591549651085191890711482591841040377832420464376026143223]

>>> multiply(82716, [31616, 837454])
[82708077205483544970470074583740846828577431856187364454411787387343982212318, 30836796656275663256542662990890163662171092281704208118107591167423888588304]

Private & Public Keys


Private keys are any nonzero numbers less than the constant N. Public keys are the products of these private keys and the pair (Gx, Gy ). For example:

>>> private_key = 296921718

>>> multiply(private_key, (Gx, Gy))
[29493341745186804828936410559976490896704930101972775917156948978213464516647, 14120583959514503052816414068611328686827638581568335296615875235402122319824]


Notice that public keys are pairs of numbers.

Signing


Signing transactions involves an operation on the Keccak 256 hashes of the transactions and private keys. The following function implements this operation:

import random 

def sign(hash, priv_key):
        """
        Signs the hashes of transactions.
        """

        result = [0, 0]
        while (0 in result) or (result[1] > N / 2):
                temp      = random.randint(1, N - 1)
                result[0] = multiply(temp, (Gx, Gy))[0] % N
                result[1] = invert(temp, N) * (hash + priv_key * result[0])
                result[1] = result[1] % N

        return result


For example:

>>> hash = 0xf62d00f14db9521c03a39c20e94aa10a82ff5f5a614772b25e36757a95a71048

>>> private_key = 296921718

>>> sign(hash, private_key)
[12676003675279000995677412431399004760576311052126257887715931882164427686866, 17853929027942611176839390215748157599052991088042356790746129338653342477382]

>>> sign(hash, private_key)
[18783324464633387734826042295911802941026009108876130700727156896210203356179, 41959562951157235894396660120771158332032804144867595196194581439345450008533]


Notice that digital signatures are pairs of numbers. Notice also that the sign function can give different results for the same inputs!

Verifying

Verifying digital signatures involves confirming certain properties with regards to the Keccak 256 hashes and public keys. The following function implements these checks:

def verify(sig, hash, pub_key):
        """
        Verifies the signatures of the hashes of transactions.
        """

        temp_1 = multiply((invert(sig[1], N) * hash)   % N, (Gx, Gy))
        temp_2 = multiply((invert(sig[1], N) * sig[0]) % N, pub_key)
        sum    = add(temp_1, temp_2)
        test_1 = (0 < sig[0] < N) and (0 < sig[1] < N)
        test_2 = sum != [0, 0]
        test_3 = sig[0] == sum[0] % N

        return test_1 and test_2 and test_3


For example:

>>> hash = 0xf62d00f14db9521c03a39c20e94aa10a82ff5f5a614772b25e36757a95a71048

>>> private_key = 296921718

>>> public_key = multiply(private_key, (Gx, Gy))

>>> public_key
[29493341745186804828936410559976490896704930101972775917156948978213464516647, 14120583959514503052816414068611328686827638581568335296615875235402122319824]

>>> signature = sign(hash, private_key)

>>> signature
[54728868372105873293629977757277092827353030346967592768173610703187933361202, 18974025727476367931183775600389145833964496722266015570370178285290252701715]

>>> verify(signature, hash, public_key)
True


To verify that public keys correspond to specific ETC account addresses, confirm that the rightmost 20 bytes of the public key Keccak 256 hashes equal those addresses.

Recovery Identifiers




Strictly speaking, ETC digital signatures include additional small numbers referred to as recovery identifiers. These allow public keys to be determined solely from the signed transactions.

Conclusion


I have explained ETC digital signatures using code rather than mathematics. Hopefully seeing how signing and verifying can be implemented with these tiny functions has been useful.

Feedback

Feel free to leave any comments or questions below. You can also contact me by clicking any of these icons:

Acknowledgements

I would like to thank IOHK (Input Output Hong Kong) for funding this effort.

License

This work is licensed under the Creative Commons Attribution ShareAlike 4.0 International License.

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!