This is a three part series. To read on the 1st part click here.
In previous part we asked #ChatGPT about the guideline one should take to create a #memecoin. Now we ask for an example #smart #contract code from it.
Question : Example of smart contract of a meme coin?
Answer : Here's an example of a simple #ERC-20 smart contract for a meme coin on the Polygon network:
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./SafeMath.sol";
contract MemeCoin is IERC20 {
using SafeMath for uint256;
string private _name;
string private _symbol;
uint8 private _decimals;
uint256 private _totalSupply;
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_decimals = 18; // You can change this as per your requirements
_totalSupply = 1000000000000000000000000000; // Total supply of tokens, adjust as needed
_balances[msg.sender] = _totalSupply;
emit Transfer(address(0), msg.sender, _totalSupply);
}
function name() public view returns (string memory) {
return _name;
}
function symbol() public view returns (string memory) {
return _symbol;
}
function decimals() public view returns (uint8) {
return _decimals;
}
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
function transfer(address recipient, uint256 amount) public override returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
function allowance(address owner, address spender) public view override returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public override returns (bool) {
_approve(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _approve(address owner, address spender, uint256 amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
}
This smart contract implements the #ERC-20 standard functions, including name, symbol, decimals, totalSupply, balanceOf, transfer, allowance, approve, and transferFrom. It also includes the necessary internal functions _transfer and _approve to handle token transfers and allowances.
You can deploy this smart contract on the #Polygon network using tools like #Remix IDE or #Truffle Suite, and then interact with it using various #Ethereum #wallets or #DEXs on the Polygon network. Remember to test the contract thoroughly and consider adding additional functionalities as per your specific requirements.
This is a three part series. To read on the 3rd part click here.