Pembelajaran matematika realistik pada dasarnya adalah pemanfaatan realitas dan lingkungan yang dipahami peserta didik untuk memperlancar proses pembelajaran matematika, sehingga mencapai tujuan pendidikan matematika secara lebih baik dari pada yang lalu. Yang dimaksud dengan realita yaitu hal-hal yang nyata atau kongret yang dapat diamati atau dipahami peserta didik lewat membayangkan, sedangkan yang dimaksud dengan lingkungan adalah lingkungan tempat peserta didik berada baik lingkungan sekolah, keluarga maupun masyarakat yang dapat dipahami peserta didik. Lingkungan dalam hal ini disebut juga kehidupan sehari-hari.
A. Prinsip Pembelajaran Matematika Realistik
Prinsip PMR ini menekankan pada pentingnya masalah kontekstual untuk memperkenalkan topik-topik matematika kepada siswa. Hal itu dilakukan dengan mempertimbangkan aspek kecocokan masalah kontekstual yang disajikan dengan: (1) topik-topik matematika yang diajarkan dan (2) konsep, prinsip, rumus dan prosedur matematika yang akan ditemukan kembali oleh siswa dalam pembelajaran.3.Self – developed models (model-model dibangun sendiri).
Menurut prinsip ini, model-model yang dibangun berfungsi sebagai jembatan antara pengetahuan informal dan matematika formal. Dalam menyelesaikan masalah kontekstual, siswa diberi kebebasan untuk membangun sendiri model matematika terkait dengan masalah kontekstual yang dipecahkan. Sebagai konsekuensi dari kebebasan itu, sangat dimungkinkan muncul berbagai model yang dibangun siswa.
Berbagai model tersebut pada mulanya mungkin masih mirip dengan masalah kontekstualnya. Ini merupakan langkah lanjutan dari re-invention dan sekaligus menunjukkan bahwa sifat bottom up mulai terjadi. Model-model tersebut diharapkan akan berubah dan mengarah kepada bentuk matematika formal. Dalam PMR diharapkan terjadi urutan pengembangan model belajar yang bottom up.
B. Karakteristik Pembelajaran Metematika Realistik
Sebagai operasionalisasi ketiga prinsip utama PMR di atas, PMR memiliki lima karakteristik, yaitu: a) the use of context (menggunakan masalah kontekstual), b) the use models (menggunakan berbagai model), c) student contributions (kontribusi siswa), d) interactivity (interaktivitas) dan e) intertwining (terintegrasi). Penjelasan secara singkat dari kelima karakteristik tersebut, secara singkat adalah sebagai berikut.
a)Menggunakan masalah kontekstual.
Pembelajaran matematika diawali dengan masalah kontekstual, sehingga memungkinkan siswa menggunakan pengalaman atau pengetahuan yang telah dimiliki sebelumnya secara langsung. Masalah kontekstual tidak hanya berfungsi sebagai sumber pematematikaan, tetapi juga sebagai sumber untuk mengaplikasikan kembali matematika. Masalah kontekstual yang diangkat sebagai topik awal pembelajaran, hendaknya masalah sederhana yang dikenali oleh siswa. Masalah kontekstual dalam PMR memiliki empat fungsi, yaitu: (1) untuk membantu siswa menggunakan konsep matematika, (2) untuk membentuk model dasar matematika dalam mendukung pola pikir siswa bermatematika, (3) untuk memanfaatkan realitas sebagai sumber aplikasi matematika dan (4) untuk melatih kemampuan siswa, khususnya dalam menerapkan matematika pada situasi nyata (realitas).
b)Menggunakan berbagai model.
Istilah model berkaitan dengan model matematika yang dibangun sendiri oleh siswa dalam mengaktualisasikan masalah kontekstual ke dalam bahasa matematika, yang merupakan jembatan bagi siswa untuk membuat sendiri model-model dari situasi nyata ke abstrak atau dari situasi informal ke formal.
c)Kontribusi siswa.
Siswa diberi kesempatan seluas-luasnya untuk mengembangkan berbagai strategi informal yang dapat mengarahkan pada pengkonstruksian berbagai prosedur untuk memecahkan masalah. Dengan kata lain, kontribusi yang besar dalam proses pembelajaran diharapkan datang dari siswa, bukan dari guru. Artinya semua pikiran atau pendapat siswa sangat diperhatikan dan dihargai.
d)Interaktif.
Interaksi antara siswa dengan guru, siswa dengan siswa, serta siswa dengan perangkat pembelajaran merupakan hal yang sangat penting dalam PMR. Bentuk-bentuk interaksi seperti: negosiasi, penjelasan, pembenaran, persetujuan, pertanyaan atau refleksi digunakan untuk mencapai bentuk pengetahuan matematika formal dari bentuk-bentuk pengetahuan matematika informal yang ditemukan sendiri oleh siswa.
e)Keterkaitan.
Struktur dan konsep matematika saling berkaitan, biasanya pembahasan suatu topik (unit pelajaran) harus dieksplorasi untuk mendukung terjadinya proses pembelajaran yang lebih bermakna. Dalam tesis ini karakteristik ini tidak muncul.
Dari prinsip dan karakteristik pembelajaran matematika realistik di atas maka dapat dikatakan bahwa permulaan pembelajaran harus dialami secara nyata oleh siswa, pengenalan konsep dan abstraksi melalui hal-hal yang konkret sesuai realitas atau lingkungan yang dihadapi siswa dalam kesehariannya yang sudah dipahami atau mudah dibayangkan siswa. Sehingga mereka dengan segera tertarik secara pribadi terhadap aktivitas matematika yang bermakna. Pembelajaran dirancang berawal dari pemecahan masalah yang ada di sekitar siswa dan berdasarkan pada pengalaman yang telah dimiliki oleh siswa.
C. Langkah-langkah Pembelajaran Matematika Realistik
Langkah-langkah di dalam proses pembelajaran matematika dengan pendekatan PMR, sebagai berikut.
1.Langkah pertama: memahami masalah kontekstual, yaitu guru memberikan masalah kontekstual dalam kehidupan sehari-hari dan meminta siswa untuk memahami masalah tersebut.
2.Langkah kedua: menjelaskan masalah kontekstual, yaitu jika dalam memahami masalah siswa mengalami kesulitan, maka guru menjelaskan situasi dan kondisi dari soal dengan cara memberikan petunjuk-petunjuk atau berupa saran seperlunya, terbatas pada bagian-bagian tertentu dari permasalahan yang belum dipahami.
3.Langkah ketiga: menyelesaikan masalah kontekstual, yaitu siswa secara individual menyelesaikan masalah kontekstual dengan cara mereka sendiri. Cara pemecahan dan jawaban masalah berbeda lebih diutamakan. Dengan menggunakan lembar kerja, siswa mengerjakan soal. Guru memotivasi siswa untuk menyelesaikan masalah dengan cara mereka sendiri.
4.Langkah keempat: membandingkan dan mendiskusikan jawaban, yaitu guru menyediakan waktu dan kesempatan kepada siswa untuk membandingkan dan mendiskusikan jawaban masalah secara berkelompok. Siswa dilatih untuk mengeluarkan ide-ide yang mereka miliki dalam kaitannya dengan interaksi siswa dalam proses belajar untuk mengoptimalkan pembelajaran.
5.Langkah kelima: menyimpulkan, yaitu guru memberi kesempatan kepada siswa untuk menarik kesimpulan tentang suatu konsep atau prosedur.
Berdasarkan prinsip dan karakteristik PMR serta dengan memperhatikan pendapat yang telah dikemukakan di atas, maka dapatlah disusun suatu langkah-langkah pembelajaran dengan pendekatan PMR yang digunakan dalam penelitian ini, yaitu sebagai berikut.
Sumber Bacaan :
Skripsi Matematika Realistik karya sendiri pada Ujian Akhir Semester UPI Tasikmalaya Tahun 2012.
http://putramanjunto.blogspot.com/2012/06/pendekatan-pembelajaran-matematika.html
http://faizalnizbah.blogspot.com/2013/05/pembelajaran-matematika-realistik.html
http://faizalnizbah.blogspot.com/2013/05/prinsip-dan-karakteristik-pendekatan.html
indonesia belajr matematika realistik
Bagikan artikel ini
Hi! I am a robot. I just upvoted you! I found similar content that readers might be interested in:
http://putramanjunto.blogspot.com/2012/06/pendekatan-pembelajaran-matematika.html
Downvoting a post can decrease pending rewards and make it less visible. Common reasons:
Submit