La matematica delle elezioni

in ita •  7 years ago  (edited)

Ciao a tutti!

Sicuramente vi è capitato, qualche volta di fare delle votazioni, tra amici, compagni di classe, per votare il sindaco, per decidere dove andare, cosa mangiare, ecc..
E quasi sicuramente, non tutti eravate d'accordo, e bisognava decidere cosa fare, quindi si faceva una votazione.


CCO creative commons

Ma che metodo di votazione fare? Sarà quello giusto?

Il metodo più ragionevole è quello di andare per maggioranza, facciamo un esempio:

-->Numero voti
pizza11
panino9

In questo caso ci sono 20 amici che devono decidere se andare a mangiare la pizza o il panino, per la decisione è stato usato il metodo della "Maggioranza semplice". Cioè chi ha più voti vince. In questo esempio la pizza ha ottenuto 11 voti e il panino 9, di conseguenza vince la pizza (meno male).

Cosa succede se si aggiunge una terza alternativa?

Facciamo un esempio:

-->Numero voti
pizza8
panino5
Kebab7

In questo caso ci sono sempre 20 "elettori" ma le scelte diventano 3! Che fare? Proviamo con il nostro solito metodo e vediamo che la pizza ottiene 8 voti, il kebab 7 e il panino 5. Vince per maggioranza la pizza accontentando 8 persone e scartando le altre 12 che avevano votato altro.

Ok, ma esistono altri sistemi di voto?

La risposta è sì. Infatti il matematico francese Jean-Charles de Borda nel 1770 formalizzò un suo sistema di voto "ponderato".
Questo sistema è ancora utilizzato oggi per attribuire premi sportivi e anche per le elezioni parlamentari in alcuni paesi.
Procedimento:
Si prende un numero n che deve essere minore o uguale al numero dei candidati e ogni elettore deve fare una lista in base alle sue preferenze, la persona che occuperà il primo posto è quella che ritiene più idonea al ruolo e l'ultima è la peggiore.

Facciamo un esempio:

Elettore A Luca Matteo Giorgia Maria
Elettore B Luca Maria Giorgia Matteo
elettore C Matteo Maria Luca Giorgia
Elettore D Giorgia Maria Luca Matteo
Elettore E Maria Giorgia Matteo Luca

In questo caso 5 elettori dovevano decidere chi eleggere come rappresentante:
Luca è stato scelto come prima opzione da 2 persone, Maria, Giorgia e Matteo da una persona ciascuno, utilizzando il sistema della maggioranza il vincitore è naturalmente Luca.
Ma sentiamo cosa dice De Borda, infatti per cercare il migliore candidato bisogna dare un punteggio ad ogni voto, dove al primo della lista dell'elettore si attribuiscono n punti, al secondo n-1, al terzo n-2, ecc...

In questo caso vediamo cosa succede:

Luca 2x4+2x2+1 13
Maria 4+3x3+1 14
Matteo 4+3+2+1 10
Giorgia 4+3+2x2 11

Wow in questo caso il vincitore non è Luca, ma Maria!
Infatti tre quinti delle persone hanno scelto Maria come seconda preferita, ritenendola migliore di Luca.
E' bastato cambiare sistema di voto per far eleggere una persona diversa, questo fa riflettere, e molto.
Se questa persona fosse stata un presidente? O un qualsiasi personaggio importante?

Difetti di questo metodo

Purtroppo questo metodo ha diversi problemi:

  • Può capitare che 2 persone abbiamo lo stesso punteggio
  • Questo metodo spinge a fare dei voti "tattici", infatti qualcuno potrebbe piazzare il candidato avversario in ultima posizione solo per farlo perdere senza seguire la preferenza ideale.

Esistono diverse versioni di questo sistema, ma ognuna presenta i suoi pro e contro.

Altri metodi

Nello stesso periodo il matematico Condorcet, rivale di de Broda, pensò ad un nuovo sistema di voto, ma questo matematico è più famoso per il suo paradosso: Il paradosso si Condorcet

Ecco un esempio:

Luca 2x4+2x2+1 13
Maria 4+3x3+1 14
Matteo 4+3+2+1 10
Giorgia 4+3+2x2 11

In questo caso i 3 amici hanno idee completamente diverse, e con qualsiasi metodo di voto non ci sarà nessun vincitore.
Condorcet a questo punto decise di creare un sistema di voto composto da "duelli", dove ogni proposta viene comparata con un'altra, e in base al numero di vittorie si decide il "vincitore di Condorcet" cioè la proposta migliore.
In questo modo potrebbe vincere anche la proposta che non è stata scelta da nessuno come prima preferenza, ma quella che è la meno sgradita da tutti.
Questo metodo, però, è molto lungo e venne anche molto criticato nel passato.

Un economista geniale: Arrow

Arrow già da giovanissimo era un genio della matematica, e cercava un argomento interessante per la sua tesi di dottorato, PERSE 8 mesi per cercare l'argomento adatto, fino a quando entrò in un bar e vide che degli uomini stavano discutendo sulle votazioni, Arrow a questo punto capì che quello sarebbe stato il suo argomento.

Se la geometria euclidea è basata su 10 assiomi, perché non fare la stessa cosa con i sistemi di voto?

Per chi non è pratico di matematica, ecco la definizione di assioma:
"In matematica si chiamano postulati o assiomi tutti e soli gli enunciati che, pur non essendo stati dimostrati, sono considerati veri."

Ecco i quattro assiomi che Arrow portò nella sua tesi:

  • Universalità: il risultato deve essere univoco, senza pareggi tra i candidati.
  • Democraticità = Anonimato: il risultato non deve dipendere solo dalle scelte di un singolo votante oppure di un sottoinsieme dei votanti, ignorando gli altri.
  • Unanimità: se tutti i votanti preferiscono la scelta A alla scelta B, anche la graduatoria finale vedrà A precedere B.
  • Indipendenza dalle alternative irrilevanti: se un candidato si ritira, la nuova graduatoria deve essere la stessa di quella vecchia a meno naturalmente della presenza di quel candidato.

A questo punto se ci sono tre o più candidati e due elettori questi vincoli sono incompatibili e quindi non esiste nessuna graduatoria (complessiva) che rispetti tutti questi assiomi.
Questo è il famoso "Teorema di Arrow" , dove Arrow giunge ad affermare che è impossibile trovare una funzione per il benessere sociale, escludendo la presenza di un dittatore e la negazione degli assiomi.

Ma perché tutti questi problemi? Cenni storici.

Torniamo indietro negli anni 2000, (io me lo ricordo molto bene XD), quando ci furono le elezioni presidenziali degli Stati Uniti d'America.


CCO creative commons

La sfida era tra il Repubblicano Bush e il democratico Al Gore, sappiamo tutti che (purtroppo?) vinse Bush, ma guardiamo bene i dati:

Presidente Grandi elettori Voti Percentuale
Bush 271 50 456 002 47,9
Al Gore 266 50 999 897 48,4

Wow molte più persone avevano votato per Al Gore, esattamente 543.895 persone in più, ma allora perché è stato eletto Bush? Negli Stati uniti i cittadini non votano i presidenti, ma votano i grandi elettori che andranno a votare i presidenti, e grazie a questo metodo Bush vinse le elezioni, se ci pensiamo bene questo fatto delle votazioni è un bel po' importante! Perché il presidente degli Stati Uniti è forse la persona più importante del mondo, e può decidere le sorti di tutti noi. Questo fa riflettere, non poco, non si parla di andare a mangiare la pizza o il gelato.

Conclusioni

Per concludere voglio lasciarvi questa frase di George Szpiro:

I paradossi sono inevitabili e ogni meccanismo di voto presenta delle incongruenze e può essere manipolato. Salvo uno, certo, ma si chiama dittatura.

Delusi? Lo sono anche io, dopo tante ricerche, arrivare a questo punto mi ha lasciato un po' amareggiato.


Grazie per aver letto fino a questo punto!! Voi cosa ne pensate??

Fonti e approfondimenti

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
Sort Order:  

Il tuo post è stupendo, affronta un argomento che tocca la vita di tutti noi parlandone da un punto di vista teorico-matematico molto interessante. Molti nemmeno sanno dell'esistenza di voti diversi dalla "maggioranza semplice": hai fatto affiorare tutta la complessità delle scelte multiple e ponderate. Ho apprezzato tantissimo anche l'excursus storico e la presenza chiarificatrice di esempi semplici e di immediata comprensione. La democrazia è davvero difficile fin dalle sue basi.
In fondo una bella dittatura risolve tante cose X-/
Una domanda: Perché Arrow escluse la possibilità di una funzione per il benessere sociale? Non mi è chiaro.

Grazie mille! Sono contento che ti sia piaciuto!

Arrow fece diverse dimostrazioni e capì che non era possibile trovare un sistema di voto perfetto, seguendo i suoi 4 assiomi.
Se sei curioso ecco un link dove viene spiegato tutto con diversi esempi:
http://leganerd.com/2012/03/27/la-democrazia-impossibile-arrow-borda-e-condorcet/

Wow, grazie per il link, adesso é più chiaro!

Greetings @siack! Your post was chosen at random and was resteemed as part of Shareables' campaign. Enjoy your free resteem!

If you wish to stop receiving this comment, please do unfollow us.

By upvoting this notification, you're supporting our campaign in Steemit. For more information about our campaign, click here!

@Shareables, we resteem anything we find shareable. Always strive for quality content. Go on express and harness your blogging potential!

God bless from us @Shareables!

Da wikipedia

La democrazia (dal greco antico: δῆμος, démos, "popolo" e κράτος, krátos, "potere")

E' matematicamente provato che il popolo non avrà mai il potere!

Ahah esatto, speriamo in futuro.

Interessante

Grazie mille.

Interessante

Grazie.

Congratulations @sciack! You have completed some achievement on Steemit and have been rewarded with new badge(s) :

Award for the number of comments received

Click on any badge to view your own Board of Honor on SteemitBoard.
For more information about SteemitBoard, click here

If you no longer want to receive notifications, reply to this comment with the word STOP

Upvote this notification to help all Steemit users. Learn why here!

Do not miss the last announcement from @steemitboard!