[Apostol's Calculus] Exercises 1.5: Solution to 14

in mathematics •  4 years ago 

Let S be the set of all functions f such that . Assume that S is a real linear space. Then, by the addition axioms of real linear spaces, there must exist an element g in S such that f + g = 0. We will show that this leads t a contradiction, thus proving S cannot be a real linear space.

Assume f is in S, and has the additive inverse (axiom 6) g such that f + g = 0. Then the primitive of f, F(x) satisfies the property:

F(1) - F(0) ≥ 0.

This implies that F(1) ≥ F(0), so f(x) must be greater than zero, since f(x) is the derivative of F(x), and F(x) must be increasing.

At the very least, (f(1) + f(0))/2 ≥ 0 (the average slope of the primitive must be positive or zero)

But this must also hold true for g and its primitive G, since g is also an element of S. But if f ≥ 0 and g ≥ 0, then (f + g) ≥ 0. The only (f + g) = 0 is if f and g are both zero, since neither can be less than zero.

But S allows for all functions such that .

Thus, there cannot exist a negative element g for every element f in S for . Only those functions f that are equal to zero can have a negative element. Therefore, S cannot be a real linear space.

QED

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
Sort Order: