Interpolación Polinomial usando el entorno GNU Octave | 2da Parte

in steemstem •  6 years ago  (edited)
Imagen editada con GIMP, gráficos hechos con GNU Octave. Elaborada por @abdulmath.
Saludos queridos lectores, bienvenidos nuevamente a mi Blog. En está oportunidad les hablare un poco acerca de Interpolación Polinomial usando el entorno GNU Octave | 2da Parte, aquí continuaremos con la segunda parte de tema, donde mostraremos la aproximación de Newton y propiedades. La misma está dirigida al público en general (aunque debemos acotar, este es un tema de un nivel más alto, para el que es necesario tener de algunos conocimientos previos de análisis real, cálculo avanzado, entre otros más), con atención especial a profesionales y estudiantes universitarios en ciencias, ingeniería y carreras afines. Estoy abierto a sus comentarios y dudas que puedan surgir en el desarrollo del mismo. Sin perder más tiempo, iniciemos.

La representación de Newton

Vamos a mostrar una manera de construir un interpolador polinomial, el cual es generalmente de mucha mayor utilidad que el interpolador polinomial de Vandermonde, el mismo pueden verlo en Interpolación Polinomial usando el entorno GNU Octave | 1era Parte.

Un ejemplo de 4 puntos

Para hacer una introducción y motivar la idea, consideremos una vez más el problema de interpolar cuatro puntos, a saber (x1, y1), (x2, y2), (x3, y3), y (x4, y4), con un polinomio cúbico p3(x). Sin embargo, en lugar de expresar el interpolador en términos de la base canónica B = { 1, x, x2, x3 }, usamos la base B' = { 1, (x - x1), (x - x1)(x - x2), (x - x1)(x - x2)(x - x3) }. Esto se traduce a encontrar los coeficientes c1, c2, c3 y c4 tal que



entonces yi = p3(xi) para i = 1 : 4. Si expresamos de forma expandida, estas cuatro ecuaciones lo que tenemos es


Al reorganizar estas ecuaciones, obtenemos el siguiente proceso de solución de cuatro pasos:


Este proceso de solución secuencial es posible debido a la elección inteligente de la base de polinomios, y el resultado es el que se conoce como la representación de Newton del polinomio de interpolación.

Para establecer el escenario para el algoritmo en el caso general de n puntos, expresemos el caso n = 4 usando la notación matricial-vectorial, para así descubrir una serie de simplificaciones.

El punto de partida es el sistema de ecuaciones que obtuvimos anteriormente el cual se puede expresar de la siguiente manera:



Como podemos apreciar inmediatamente que c1 = y1. Así, podemos eliminar c1 de la segunda, tercera y cuarta ecuación, al restar la ecuación 1 de dichas ecuaciones obteniendo así:


Si dividimos las ecuaciones 2, 3 y 4 por (x2 - x1), (x3 - x1) y (x4 - x1) respectivamente, entonces el sistema se transforma en


donde y21, y31, y41 están dados por


Notemos que


Uno de los puntos claves en la resolución del sistema, es que hemos reducido en una dimensión el problema, así que tenemos un sistema 3 x 3 el cual debemos resolver, a saber:


Este sistema es exactamente el que se obtiene cuando se buscan los coeficientes del polinomio de interpolación cuadrática


que interpola los puntos (x2, y2), (x3, y3), (x4, y4).



El caso general de n puntos

Para el caso general de n puntos, vemos que si c1 = y1 y



interpola los puntos


entonces


interpola los puntos (x1, y1), (x2, y2), . . . , (xn, yn). Esto es fácil de verificar. De hecho, para j = 1:n


Así, esto nos suministra las herramientas para una formulación recursiva de todo el proceso:


Función recursiva de la representación de Newton. Elaborado por @abdulmath.

Si n = 1, entonces el interpolador que devuelve el proceso recursivo es constante p(x) = y1, es decir, c1 = y1. En caso contrario, el vector final es un arreglo de y1 y de la solución al problema reducido. La llamada recursividad obtiene los coeficientes del interpolador q(x) mencionado anteriormente.

Para desarrollar una implementación no recursiva, volvemos a nuestro ejemplo de cuatro puntos y la ecuación matricial siguiente



Así, podemos ver que c2 = y21. Primero si restamos la fila 3 con la fila 2 y dividimos por (x3 - x2), y luego restamos la fila 4 con la fila 2 y dividimos por (x4 - x2), obtenemos lo siguiente:


donde


Ahora bien, en este punto c3 = y321. Finalmente si restamos la cuarta fila con la tercera y dividimos por (x4 - x3), obtenemos


donde


Claramente c4 = y4321. El patrón para el caso general de n puntos es evidente:


Script patrón del caso general. Elaborado por @abdulmath en GNU Octave.

Sin embargo, al actualizar las ecuaciones solo necesitamos hacer un seguimiento de los cambios en el vector y. Por ejemplo,


Esto lleva a


Función de Interpolación de Newton. Elaborado por @abdulmath en GNU Octave.


Multiplicación Anidada

Al igual que con la representación de Vandermonde, la representación de Newton permite un esquema de multiplicación anidada eficiente. Por ejemplo, para evaluar p3(x) en x = z, tenemos el anidamiento siguiente



El fragmento
pval = c(4);
pval = (z-x(3))*pval+c(3);
pval = (z-x(2))*pval+c(2);
pval = (z-x(1))*pval+c(1);
asigna el valor de p3(z) a pval. Si z es un vector, entonces tenemos
pval = c(4)*ones(size(z));
pval = (z-x(3)).*pval+c(3);
pval = (z-x(2)).*pval+c(2);
pval = (z-x(1)).*pval+c(1);
En general tenemos


Función de la Regla de Horner para Interpolación de Newton. Elaborado por @abdulmath en GNU Octave.



Propiedades

Con dos enfoques para el problema de la interpolación polinómica, tenemos la oportunidad de evaluar sus méritos relativos. La velocidad y la precisión son las principales preocupaciones.


Velocidad

Comenzemos con un script de velocidad o tiempo



Script de comparación de Velocidad. Elaborado por @abdulmath en GNU Octave.


Precisión

Sabemos que el interpolador polinómico existe y es único, pero ¿cómo se aproxima? La respuesta a la pregunta depende de las derivadas de la función que se está interpolando.

Este resultado muestra que la calidad de pn-1(x) depende de el tamaño de la n-ésima derivada. Si tenemos una cota de esta derivada, entonces podemos calcular la cota del error. Para ilustrar lo anterior de manera practica, supongamos que



Así, para cualquier z en el intervalo [a, b] tenemos


Si basamos el interpolante en los puntos igualmente espaciados


entonces por un simple cambio de variable tenemos


Se puede demostrar que el máximo no es mayor que 1/(4n), de donde concluimos que


Por lo tanto, si una función tiene mal comportamiento en las derivadas superiores, entonces la calidad del polinomio interpolante puede disminuir a medida que aumenta el grado.

Un ejemplo clásico de esto es el problema de interpolar la función



en el intervalo [-1, 1].

En el script siguiente exploramos este problema:



Script Runge. Elaborado por @abdulmath en GNU Octave.

En las gráficas a continuación podemos apreciar que el interpolador captura el comportamiento de la función en la parte central del intervalo, mientras que este se pierde cerca de los puntos de la frontera.



Queridos amigos y lectores, espero hayan disfrutado y aprendido acerca de la Interpolación Polinomial usando el entorno GNU Octave | 2da Parte, de igual manera los invito para la eera Parte de este tema, donde continuaremos mostrando el desarrollo del mismo con los script y aplicaciones. Espero que esto pueda servir de apoyo a ustedes, hijos, nietos, sobrinos o amigos que quieran aprender un poco más del maravilloso mundo de las matemáticas y la programación. No olviden dejar sus comentarios. Saludos y nos leemos pronto.


Si desean consultar un poco más del tema pueden usar las siguientes referencias:

  • Demidovich, B. P., and I. A. Maron. Computational Mathematics Mir, Moscow, 1976.
  • Björck, Åke. Numerical methods in matrix computations. Vol. 59. Cham: Springer, 2015.
  • Burden, Richard L., and J. Douglas Faires. Numerical analysis. Ninth Edition. Cengage Learning. 2011.

También los invito a leer las anteriores publicaciones de está serie de Introducción a las Ecuaciones Diferenciales Parciales, que estoy seguro serán de su interés:
Interpolación Polinomial usando el entorno GNU Octave - 1era Parte.Interpolación Polinomial usando el entorno GNU Octave - 2da Parte.

Las imágenes, separadores y las ecuaciones fueron creadas y editadas por @abdulmath usando software libre, GNU Octave, , GIMP e Inkscape.



@SteemSTEM es un proyecto comunitario con el objetivo de promover y apoyar la Ciencia, la Tecnología, la Ingeniería y las Matemáticas en la blockchain Steem. @Stem-espanol es parte de esta comunidad, si desea apoyar el proyecto, puedes contribuir con contenido en español en las áreas de Ciencia, Tecnología, Ingeniería y Matemáticas, utilizando las etiquetas #steemstem y #stem-espanol.



Imagen diseñada con GIMP y elaborada por @abdulmath.

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
Sort Order:  

Excelente publicación @abdulmath Mis mejores deseos.
Buena vibra.

Gracias @angelica7. Gracias por tus comentarios. Saludos

Bastante explicativo tu post, cada detalle, muy bueno.

Hola @andreamsulba, agradecido por tus comentarios y apreciaciones. Saludos y un abrazo.

Grandioso estos son temas que son difíciles de encontrar en la web de verdad se ve que tienes mucho amor por las matemáticas.

Muy agradecido por su tiempo en leer mis publicaciones, y su valoración a mi trabajo continuo. Gracias por visitar mi blog, y por su apoyo al esfuerzo.

Hi @abdulmath!

Your post was upvoted by utopian.io in cooperation with steemstem - supporting knowledge, innovation and technological advancement on the Steem Blockchain.

Contribute to Open Source with utopian.io

Learn how to contribute on our website and join the new open source economy.

Want to chat? Join the Utopian Community on Discord https://discord.gg/h52nFrV

Thanks for the support

Felicitaciones amigo @abdulmath

Agradecido por tu visita y valoración de mi trabajo, Saludos amigo @reyito

Buen trabajo @adbdulmath, nos seguimos leyendo amigo.

Gracias. Saludos



This post has been voted on by the steemstem curation team and voting trail.

There is more to SteemSTEM than just writing posts, check here for some more tips on being a community member. You can also join our discord here to get to know the rest of the community!

Thanks for the support

Excelente post, entendi algunas cosas pero después me perdi.

Agradecido por tu comentario. Con un poco más de paciencia, seguro podrás entender todo. Saludos

Me encanta tu post, está excelente. Una mente genial y estéticamente muy llamativo. Aprendo de ti, mis respetos. Saludos.

Agradecido por tu comentario, Me encanta que puedas aprender de mis publicaciones. Saludos y exitos, un abrazo

Felicidades mi pana. jajjja no entiendo mucho pero bien. jajajaj

Gracias por tus comentarios. Saludos

Excelente explicaciones, te felicito por ese amor a las matemáticas.

Gracias @elemarg25, Agradecido por tus comentarios. Saludos y un abrazo.

Súper interesante @abdulmath me impresiona la facilidad con que explicas el contenido haciéndolo tan agradable.

Muchos éxitos amiguito mio.

Hola @mariana4ve, que bueno que te haya gustado.

Saludos y un abrazo. Igual para tí, éxitos.

Matematica el lenguaje de el universo buen post¡¡

Muy agradecido por tus comentarios. La belleza del Universo: Las Matemáticas. Saludos