"10 неожиданных хитростей и библиотек Python, которые упростят вашу жизнь"

in python •  6 days ago 

image


10 неожиданных хитростей и библиотек Python, которые упростят вашу жизнь

Привет, программисты и любители кода! Если вы считаете, что Python — это просто язык, который позволяет вам писать код, то вы явно недооценили его магические способности. Давайте взглянем на 10 неожиданных хитростей и библиотек, которые сделают вашу жизнь проще, а код — красивее. И не забудьте запастись попкорном, ведь программирование — это не только работа, но и шоу!

1. enumerate(): когда вам нужно больше, чем просто счетчик

Забудьте об изнурительных циклах с range(). Используйте enumerate(), чтобы получить индекс и элемент в одной строке. Теперь вы сможете сосчитать, сколько раз вы пытались сделать что-то умное, и все равно получили ошибку.

fruits = ['яблоко', 'банан', 'вишня']
for index, fruit in enumerate(fruits):
    print(f"{index}: {fruit}")

2. zip(): сшиваем вместе, как старые друзья

Когда нужно объединить несколько списков, zip() — ваш лучший друг. Это как собрать всех ваших друзей на вечеринке, только без лишнего шума!

names = ['Alice', 'Bob', 'Charlie']
scores = [85, 90, 95]
for name, score in zip(names, scores):
    print(f"{name} получил {score} баллов.")

3. defaultdict: когда вам не нужно беспокоиться о ключах

С defaultdict вы можете забыть о проверках на наличие ключей в словаре. Это как иметь запасную пару носков — всегда полезно!

from collections import defaultdict

d = defaultdict(int)
d['apple'] += 1
print(d)  # defaultdict(<class 'int'>, {'apple': 1})

4. itertools: бесконечные итерации и бесконечные возможности

Эта библиотека — как швейцарский нож для программистов. Комбинируйте, фильтруйте и создавайте бесконечные итерации, пока не решите, что пора делать перерыв.

import itertools

for combo in itertools.combinations(['A', 'B', 'C'], 2):
    print(combo)

5. functools: декораторы, которые делают вашу жизнь проще

Декораторы — это как специи в вашем коде. Они могут сделать его более вкусным и удобным. Попробуйте lru_cache, чтобы кэшировать результаты функций и не тратить время на повторные вычисления. Как в старом добром Netflix: "Вы уже смотрели это?"

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):
    return n if n <= 1 else fibonacci(n-1) + fibonacci(n-2)

6. Pandas: ваш личный аналитик данных

Если вы работаете с данными, то Pandas — это как иметь личного помощника, который всегда готов помочь. Он может обрабатывать данные быстрее, чем вы успеете сказать "где мой кофе?"

import pandas as pd

data = {'Имя': ['Аня', 'Борис', 'Вика'], 'Возраст': [25, 30, 22]}
df = pd.DataFrame(data)
print(df)

7. matplotlib: визуализируйте свои данные, как художник

Хотите показать свои данные в красивом виде? Используйте matplotlib. Это как добавить картинку к вашему кодовому шедевру — теперь он не только работает, но и выглядит потрясающе!

import matplotlib.pyplot as plt

plt.plot([1, 2, 3], [4, 5, 6])
plt.title('Пример графика')
plt.show()

8. requests: делаем HTTP-запросы проще

Забудьте о сложных настройках и конфигурациях. С requests вы сможете отправлять запросы так же легко, как отправляете сообщения в мессенджере. Только не забудьте, что HTTP-запросы не заменят ваши вечерние чаты!

import requests

response = requests.get('https://api.github.com')
print(response.json())

9. pytest: тестирование с улыбкой

Тестирование может быть скучным, но не с `pytest


image


All images are taken from the Pixabay.comБольше полезных статей 4adm.in

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
Sort Order:  

image.png